(转)深入详细理解矩阵 (矩阵的加减乘、转置、共轭、共轭转置)
日期: 2018-09-23 分类: 个人收藏 424次阅读
矩阵:英文名Matrix。在数学名词中,矩阵用来表示统计数据等方面的各种有关联的数据。这个定义很好地解释了Matrix代码制造世界的数学逻辑基础。矩阵是数学中最重要的基本概念之一,是代数学的一个主要研究对象,也是数学研究及应用的一个重要工具。
矩阵加法:(只有同型矩阵之间才可以进行加法)
矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
矩阵减法:(只有同型矩阵之间才可以进行减法)
矩阵乘法:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算。
C = AB
将A, B, C分成相等大小的方块矩阵:
示例:
矩阵的转置:
把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。
矩阵的转置满足以下运算律:
矩阵的共轭:
矩阵的共轭定义为:
一个2×2复数矩阵的共轭如下所示 [12] :
则
矩阵的共轭转置:
矩阵的共轭转置定义为:
也可以写为:
一个2×2复数矩阵的共轭如下所示:
则
本文来自 Aurora of Lewis 的CSDN 博客 ,全文地址请点击: 除特别声明,本站所有文章均为原创,如需转载请以超级链接形式注明出处:SmartCat's Blog
标签:数学知识 数学知识
上一篇: XSS漏洞 BEEF工具的使用
下一篇: 29-线程同步——读写锁和自旋锁
精华推荐