Tensorboard实现神经网络的可视化
日期: 2018-07-07 分类: 个人收藏 343次阅读
本篇博客介绍使用Tensorboard实现神经网络的可视化,首先是实现可视化的代码:
# encoding:utf-8 import tensorflow as tf # 添加层 def add_layer(inputs, in_size, out_size, activation_function=None): with tf.name_scope('layer'): with tf.name_scope('weights'): W = tf.Variable(tf.random_normal([in_size, out_size]), name='W') with tf.name_scope('bias'): b = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b') with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, W) + b if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 1], name='x_input') ys = tf.placeholder(tf.float32, [No
除特别声明,本站所有文章均为原创,如需转载请以超级链接形式注明出处:SmartCat's Blog
精华推荐